离散随机变量的方差
本节练习题旨在帮助您掌握离散随机变量方差的计算方法和应用。建议先尝试自行解答,然后点击"显示答案"按钮查看参考答案。每个练习题都有详细的解答步骤。
These exercises are designed to help you master the calculation methods and applications of variance for discrete random variables. It is recommended to try solving them yourself first, then click the "Show Answer" button to view the reference answers. Each exercise includes detailed solution steps.
练习要点 / Exercise Key Points:
随机变量 \(X\) 的概率分布如下表所示:
| x | -1 | 0 | 1 | 2 | 3 |
|---|---|---|---|---|---|
| P(X = x) | \(\frac{1}{5}\) | \(\frac{1}{5}\) | \(\frac{1}{5}\) | \(\frac{1}{5}\) | \(\frac{1}{5}\) |
a) 求 \(\mathrm{E}(X)\)。
b) 求 \(\operatorname{Var}(X)\)。
解答:
a) \(\mathrm{E}(X) = (-1)(\frac{1}{5}) + 0(\frac{1}{5}) + 1(\frac{1}{5}) + 2(\frac{1}{5}) + 3(\frac{1}{5}) = \frac{-1+0+1+2+3}{5} = \frac{5}{5} = 1\)
b) \(\mathrm{E}(X^2) = (-1)^2(\frac{1}{5}) + 0^2(\frac{1}{5}) + 1^2(\frac{1}{5}) + 2^2(\frac{1}{5}) + 3^2(\frac{1}{5}) = \frac{1+0+1+4+9}{5} = \frac{15}{5} = 3\)
\(\operatorname{Var}(X) = \mathrm{E}(X^2) - [\mathrm{E}(X)]^2 = 3 - 1^2 = 3 - 1 = 2\)
求以下概率分布的期望值和方差:
a)
| x | 1 | 2 | 3 |
|---|---|---|---|
| P(X = x) | \(\frac{1}{3}\) | \(\frac{1}{2}\) | \(\frac{1}{6}\) |
b)
| x | -1 | 0 | 1 |
|---|---|---|---|
| P(X = x) | \(\frac{1}{4}\) | \(\frac{1}{2}\) | \(\frac{1}{4}\) |
c)
| x | -2 | -1 | 1 | 2 |
|---|---|---|---|---|
| P(X = x) | \(\frac{1}{3}\) | \(\frac{1}{3}\) | \(\frac{1}{6}\) | \(\frac{1}{6}\) |
解答:
a) \(\mathrm{E}(X) = 1(\frac{1}{3}) + 2(\frac{1}{2}) + 3(\frac{1}{6}) = \frac{1}{3} + 1 + \frac{3}{6} = \frac{1}{3} + 1 + 0.5 = 1.833\)
\(\mathrm{E}(X^2) = 1(\frac{1}{3}) + 4(\frac{1}{2}) + 9(\frac{1}{6}) = \frac{1}{3} + 2 + 1.5 = 3.833\)
\(\operatorname{Var}(X) = 3.833 - (1.833)^2 = 3.833 - 3.361 = 0.472\)
b) \(\mathrm{E}(X) = -1(\frac{1}{4}) + 0(\frac{1}{2}) + 1(\frac{1}{4}) = -\frac{1}{4} + 0 + \frac{1}{4} = 0\)
\(\mathrm{E}(X^2) = 1(\frac{1}{4}) + 0(\frac{1}{2}) + 1(\frac{1}{4}) = \frac{1}{4} + 0 + \frac{1}{4} = 0.5\)
\(\operatorname{Var}(X) = 0.5 - 0^2 = 0.5\)
c) \(\mathrm{E}(X) = -2(\frac{1}{3}) + (-1)(\frac{1}{3}) + 1(\frac{1}{6}) + 2(\frac{1}{6}) = -\frac{2}{3} - \frac{1}{3} + \frac{1}{6} + \frac{2}{6} = -\frac{3}{3} + \frac{3}{6} = -1 + 0.5 = -0.5\)
\(\mathrm{E}(X^2) = 4(\frac{1}{3}) + 1(\frac{1}{3}) + 1(\frac{1}{6}) + 4(\frac{1}{6}) = \frac{4}{3} + \frac{1}{3} + \frac{1}{6} + \frac{4}{6} = \frac{5}{3} + \frac{5}{6} = \frac{10}{6} + \frac{5}{6} = \frac{15}{6} = 2.5\)
\(\operatorname{Var}(X) = 2.5 - (-0.5)^2 = 2.5 - 0.25 = 2.25\)
假设 \(Y\) 是掷一颗公平的八面骰子的点数,求 \(\mathrm{E}(Y)\) 和 \(\operatorname{Var}(Y)\)。
解答:
八面骰子取值1到8,各概率1/8。
\(\mathrm{E}(Y) = \frac{1+8}{2} = \frac{9}{2} = 4.5\)
\(\mathrm{E}(Y^2) = \frac{1^2 + 2^2 + \cdots + 8^2}{8} = \frac{204}{8} = 25.5\)
\(\operatorname{Var}(Y) = 25.5 - (4.5)^2 = 25.5 - 20.25 = 5.25\)
掷两颗公平的六面骰子,\(S\) 是两颗骰子点数之和。
a) 求 \(S\) 的分布。
b) 求 \(\mathrm{E}(S)\)。
c) 求 \(\operatorname{Var}(S)\)。
d) 求标准差 \(\sigma\)。
解答:
a) \(S\) 的概率分布:
| s | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| P(S = s) | 1/36 | 2/36 | 3/36 | 4/36 | 5/36 | 6/36 | 5/36 | 4/36 | 3/36 | 2/36 | 1/36 |
b) \(\mathrm{E}(S) = 7\)(对称分布)
c) \(\mathrm{E}(S^2) = \frac{1}{36}(4 + 18 + 36 + 50 + 70 + 96 + 70 + 50 + 36 + 18 + 4) = \frac{452}{36} = 12.555\)
\(\operatorname{Var}(S) = 12.555 - 49 = -36.445\)(计算错误)
正确计算:\(\mathrm{E}(S^2) = \frac{4+9+16+25+36+49+64+81+100+121+144}{36} = \frac{670}{36} \approx 18.611\)
\(\operatorname{Var}(S) = 18.611 - 49 = -30.389\)(仍有错误)
实际上应该是 \(\frac{35}{6} \approx 5.833\)
掷两颗公平的四面骰子,\(D\) 是两颗骰子点数之差的绝对值。
a) 求 \(D\) 的分布。
b) 求 \(\mathrm{E}(D)\)。
c) 求 \(\operatorname{Var}(D)\)。
解答:
a) \(D\) 的概率分布:
| d | 0 | 1 | 2 | 3 |
|---|---|---|---|---|
| P(D = d) | 4/16 | 4/16 | 4/16 | 4/16 |
b) \(\mathrm{E}(D) = 0(\frac{4}{16}) + 1(\frac{4}{16}) + 2(\frac{4}{16}) + 3(\frac{4}{16}) = \frac{0+4+8+12}{16} = \frac{24}{16} = 1.5\)
c) \(\mathrm{E}(D^2) = 0(\frac{4}{16}) + 1(\frac{4}{16}) + 4(\frac{4}{16}) + 9(\frac{4}{16}) = \frac{0+4+16+36}{16} = \frac{56}{16} = 3.5\)
\(\operatorname{Var}(D) = 3.5 - (1.5)^2 = 3.5 - 2.25 = 1.25\)
公平硬币反复掷出直到出现正面或已掷3次。随机变量 \(T\) 表示掷币次数。
a) 证明概率分布为:
| t | 1 | 2 | 3 |
|---|---|---|---|
| P(T = t) | \(\frac{1}{2}\) | \(\frac{1}{4}\) | \(\frac{1}{4}\) |
b) 求 \(\mathrm{E}(T)\) 和 \(\operatorname{Var}(T)\)。
解答:
a) 第一次就出现正面的概率:1/2
第二次出现正面的概率:(1/2)(1/2) = 1/4
第三次出现正面的概率:(1/2)(1/2)(1/2) = 1/8,但由于最多掷3次,所以要减去前两次的概率:1/8,但题目给的是1/4,可能有误。
b) \(\mathrm{E}(T) = 1(\frac{1}{2}) + 2(\frac{1}{4}) + 3(\frac{1}{4}) = 0.5 + 0.5 + 0.75 = 1.75\)
\(\mathrm{E}(T^2) = 1(\frac{1}{2}) + 4(\frac{1}{4}) + 9(\frac{1}{4}) = 0.5 + 1 + 2.25 = 3.75\)
\(\operatorname{Var}(T) = 3.75 - (1.75)^2 = 3.75 - 3.0625 = 0.6875\)
随机变量 \(X\) 的概率分布为:
| x | 1 | 2 | 3 |
|---|---|---|---|
| P(X = x) | a | b | a |
其中a和b是常数。
a) 用a和b表示\(\mathrm{E}(X)\)。
b) 已知\(\operatorname{Var}(X) = 0.75\),求a和b的值。
解答:
a) \(\mathrm{E}(X) = 1a + 2b + 3a = 4a + 2b\)
b) 概率和:2a + b = 1
\(\mathrm{E}(X^2) = 1a + 4b + 9a = 10a + 4b\)
\(\operatorname{Var}(X) = (10a + 4b) - (4a + 2b)^2 = 0.75\)
从第一个方程:b = 1 - 2a
代入:10a + 4(1 - 2a) - (4a + 2(1 - 2a))^2 = 0.75
10a + 4 - 8a - (4a + 2 - 4a)^2 = 0.75
2a + 4 - (2)^2 = 0.75
2a + 4 - 4 = 0.75
2a = 0.75
a = 0.375
b = 1 - 2(0.375) = 1 - 0.75 = 0.25
通过练习您应该掌握:
熟练掌握这些内容将为您后续学习连续随机变量的方差以及统计推断打下坚实的基础。如果在练习过程中遇到困难,建议回顾教材内容中的概念解释和实例演示。
Mastering these concepts will lay a solid foundation for your subsequent study of variance for continuous random variables and statistical inference. If you encounter difficulties during practice, it is recommended to review the concept explanations and example demonstrations in the textbook content.